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SUMMARY 
The one-dimensional equations for transient two-phase flow are a system of nonlinear hyperbolic partial 
differential equations, expressible, under certain assumptions, in conservation form. Inasmuch as the use of the 
method of characteristics becomes complicated if shock waves are present, it is easier to follow a gas-dynamics 
approach and employ one of the available procedures for solving one-dimensional systems of conservation 
equations. A recently introduced technique, due to McGuire and Morris [1, see also 12] and known as an Explicit- 
Implicit method, is used here for a simple boundary-value problem of wave propagation in bubbly two-phase 
mixtures, and is found to be simple and versatile. A comparison of this method with the well-known Lax-Wendroff 
(two-step) scheme demonstrates that shock fronts are simulated better, oscillations behind the shocks are 
smoothable by parameter adjustment, and computation time is reduced when the Explicit-Implicit method is 
employed. 

1. Introduction 

The problem of transient analysis of two-phase flows is complicated by the fact that the 

evaluation of the characteristic and the compatibility equations is often difficult, as 
illustrated by Prosperetti  and Wijngaarden [2] and Lyczokowski et al. [3]. Moreover, the 

possibility of the formation of shock waves due to the steepening of compression waves 
usually limits the use of the method of characteristics because of the need to incorporate the 
shock equations as internal boundary conditions in the characteristic grid. If the governing 

field equations of the problem can be expressed in conservation form, it is often easier to 
follow the approach used in gas dynamics, wherein discontinuities, such as shocks, are 
permitted. The well-known Lax-Wendroff  scheme (see Ames [ 11, 12]) has been successfully 

applied by Kranenburg [4] for problems of transient cavitation in pipe lines. Martin et al. 

[5] have also used the Lax-Wendroff  scheme for the numerical integration of conservation 
equations based on a homogeneous model for the analysis of transients in air-water 

mixtures. For  a separated-flow model, based on certain reasonable assumptions, Martin and 
Padmanabhan  [6] have shown that the governing equations are expressible in conservation 
form whereupon the Lax-Wendroff  numerical scheme can be applied. 

For wave propagation in two-phase conduit flow the existence of a pressure gradient 
results in a variation of the wave propagation speed along the conduit, even for steady flow. 
In a computational grid the length and time steps, / ix and At, have to satisfy the Couran t -  
Friedrichs-Lewy (CFL) condition in order to assure stability of explicit schemes, as 
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discussed by Lax and Wendroff [7]. These schemes are most accurate if Ax/Llt is equal to the 
local celerity of the disturbance in the x - t space. However, for obvious reasons this is 
seldom possible in transient computations of two-phase flows. Consequently, wave distor- 
tion occurs, in effect changing the form of the disturbance by causing an overshooting of the 
wave front, which is followed by high-frequency oscillations. One method for suppressing 
these irregularities is the introduction of artificial viscosity terms. Vliegenthart [8] proposed 
the use of a Shuman filtering operator, which is claimed to be able to remove nonlinear 
instabilities under certain conditions. For transient two-phase conduit flow, Kranenburg 
[4] and Martin et al. [5] used this method for suppressing oscillations and overshooting. 

By combining a two-step explicit scheme [9] and an implicit scheme of second-order 
accuracy [10], McGuire and Morris [1] introduced an attractive and simple Explicit- 
Implicit method. The overshooting and attendant high-frequency oscillations were reduced 
by the proper selection of two parameters used in the procedure. The method appears to be 
particularly applicable for boundary-value problems since at each step the implicit set of 
calculations can incorporate any changes in the boundary at the step. However, some of the 
computations along the boundary may have to be carried out using the method of 
characteristics. 

The objective of this paper is to illustrate the use of the Explicit-Implicit method, and to 
compare it with the Lax-Wendroff two-step scheme for a boundary-value problem of the 
transient analysis of two-phase flow of a flowing bubbly mixture. The ends of the conduit are 
represented by a constant pressure reservoir at one end and a quick-acting valve at the 
other. The transient is generated by a rapid closure of the valve at the downstream end of the 
pipe. Due to pipe friction an initial steady-flow pressure gradient exists in the horizontal 
pipe. As the mesh ratio, p = At/Ax, for the finite-difference scheme employed is of the order 
of 10-3 because of the stability requirement of Courant-Friedrich-Lewy, this paper also 
serves as a verification of the use of the Explicit-Implicit method for computations with 
extremely small mesh ratios. It should be noted that the results reported by McGuire and 
Morris [1] correspond to much higher values of p, 0.25 to 1. 

2. Conservation equations for homogeneous model 

Martin et al. [5] proposed a homogeneous model for the analysis of transients in bubbly 
mixtures, which basically consists of one-dimensional equations of conservation of mass for 
each of the phases, and conservation of momentum for the mixture. The three field 
equations can be expressed in the conservation form as follows: 

Conservation of mass of the liquid phase: 

~ - { ( 1 -  ~ ) I I +  P ( ~ / +  ~---~-~e)l} + ~-~ {(1-ot )v l l  + P ( ~ +  ~-~-~e)]} = O, (2.1) 

Conservation of mass of the gas phase: 

(~pl/r) + ~x (c~P1/~v) = O, (2.2) 
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Conservation of momentum of the mixture: 

~ - { ( 1 -  ~)vl l  + P(K~t + ~--~Pe)l} 

(2.3) 

In the above equations ~ represents the average void fraction, P the cross-sectional 
average pressure, v the velocity of the mixture, K~ the bulk modulus of elasticity of the liquid, 
D the diameter of the pipe,/~ a pipe-constraint factor, e the thickness of the pipe wall, p~ the 
density of liquid, f the Darcy-Weisbach resistance coefficient, y the polytropic exponent, x 
the distance along the pipe and t the time. Equations (2.1) to (2.3) are in conservation form 
and are a system of nonlinear hyperbolic partial differential equations with ct, P and v as 
dependent variables, and x and t as independent variables. Martin et al. 1-5] derived the 
characteristic roots of the system and developed the compatibility equations. 

In this paper the system of equations (2.1) to (2.3) will be numerically integrated in order 
to compare the Explicit-Implicit scheme with the Lax-Wendroff scheme. The following 
characteristic and compatibility equations, derived by Martin et al. [5], will be used to 
simulate the boundary conditions. 

dx 
- v _+ w,  ( 2 . 4 )  

dt 

and 

dP w dv _ wc 2 
- -  -+ + = 0 ,  ( 2 . 5 )  
dt c 1 dt c 1 

dx  
d~-- = v, (2.6) 

dP  da 
d~- + c3 ~ -  = 0. (2.7) 

where 

w = (1 - ~)p, - ~ e  + ~ + ~ (2.8) 

represents the wave propagation speed in the mixture. The parameters Cl, c 2 and ¢3 are 
defined by 

1 
cl - pl(1 - cQ' (2.9) 

Y vlvf, c 2 = g sin 0 - (2.10) 
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and 

E (1 1)1-1 .  2.11, c a =  c t (1 -~)  Kg K t 

3. Transient two-phase bubbly mixture in a long conduit 

The homogeneous model of two-phase flow described by equations (2.1) to (2.3) is used to 
simulate the transient response of a flowing bubbly air-water mixture subsequent to the 
rapid closure of a value at the downstream end of a horizontal pipe 25 mm in diameter and 
18 m long. As shown in Figure 1, the pipe is connected to a constant pressure reservoir at 
one end and a quick acting valve at the other end. In the example to be considered, the 
constant reservoir pressure Po is assumed to be 0.38 mPa absolute and the void fraction % at 
pressure Po is taken as 0.014. The average steady-flow velocity v 0 = 1.5 m/sec., and the time 
of valve closure is assumed to be 0.03 sec. For simplicity a linear valve closure is assumed. 
The pulse propagation velocity with only water in the pipe is assumed to be 600 m/sec. 

GAS~ 
t | /  POROUS 

~Lr~4h"'~ WA L L T 
~,3 g*~ % ° o  . * ° ,, ,, 

L~OUlO • .;:o~=Co- " * .  - ° o ~ o  *,~ * ,, , 
( / r ~  VALVE 

(x = L) 

RESERVOIR 
(x = O) 

F i g u r e  1. Schema t i c  of  f lowing  t w o - p h a s e  b u b b l y  m i x t u r e  in condu i t .  

The boundary conditions are simulated by use of the method of characteristics, equations 
(2.4-2.7). The value of the time interval is re-computed each time step from the CFL 
condition, At = ~Ix~Iv + Wlmax" Computations at the interior grid points are performed 
twice, first using the Explicit-Implicit method [1], and then the Lax-Wendroff two-step 
scheme. 

4. Lax-Wendroff two-step scheme 

The Lax-Wendroff two-step scheme is an explicit finite-difference scheme of second-order 
accuracy. The first step, which may be considered as an intermediate step, is of first-order 
accuracy. Details describing the method and discussion on stability criteria are available 
elsewhere [11, 12, 13]. 

We consider the set of conservation equations (2.1-2.3) to be of the form 

~Qi____L. OQi2 
t3t t- t?x = Qi3 (4.1) 

in which i = 1, 2, 3. The quantity Qix, with i = 1, 2, 3, represents functions of the dependent 
variables P, ~ and v. Applying the Lax-Wendroff two-step finite-difference scheme to 
equation (4.1) we obtain: 
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First Step: 

Qil(x + Ax, t + At) = 0.5[Qi~(x + 2dx, t) + Qil(x, t)] 

- 0.5p[Q~2(x + 2Ax, t) - Q~2(x, t)] 

+ 0.5At[Qia(x + 2Ax, t) + Qi3(x, t)] + O(Ax 2, At), (4.2) 

Second Step: 

Qil(x, t + 2At) = Qil(x, t) - p[Qi2(x + Ax, t + At) - Qi2(x - Ax, t + At)] 

+ At[Qi3(x + Ax, t + At) + Q~3(x - Ax, t + At)] + O(Ax 2, At2). (4.3) 

Equations (4.2) and (4.3) are used for the computational steps shown schematically in 
Figure 2. The Courant-Friedrichs-Lewy stability condition is satisfied. 

( ~  FIRST STEP 

( ~  • SECOND STEP 

t + 2 ~ t  I 
t + A t  

' t 
- A  x x X+AX x + 2 ~.x x 

Figure 2. Definition sketch of two-step Lax-Wendroff  procedure in x - t plane. 

When a discontinuity such as a shock wave develops the Lax-Wendroff scheme 
produces an overshooting of the shock front, followed by oscillations. These numerical 
oscillations have to be damped by introducing additional dissipation. Based on Shuman's 
filtering operator method, as described by Vliegenthart [8], Kranenburg [4] has shown, for 
a similar problem of wave propagation in bubbly mixtures, that smoothing of the oscillations 
can be accomplished without significantly affecting the low frequency waves associated with 
the transient. This method is used here to smooth the numerical oscillations following the 
discontinuity. A smoothing parameter is defined as 

Oi(x, t) = {0 .5Qi l (X  q- 2Ax, t) - Qi l (X,  t) -t- 0 . 5 Q i l ( X  - 2Ax, t)}/Qi~ (4.4) 

where Qir is a reference interval variable of Qil(x, t). If 0 i exceeds a reference value 0~, 
numerical viscosity is added as follows. If 10~1 > 0,: 

Q,~(x, t) = aa(x ,  t) + 0.5O,,O,(x, t) (4.5) 

where Qa is the corrected value of Q~z. It is necessary to ascertain the effect of 0r and to 
select a value, by trial, that yields just sufficient smoothing. Figure 3 illustrates the effect of 0 e 
and shows that a value of 0~ = 0.03 appears to yield satisfactory results. Kranenburg [4] 
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Figure 3. Effect of smoothing on Lax-Wendroff scheme. 
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shows that, if 0~ > 8~z2/(L/Ax) 2, L being the length of the pipe, the smoothing procedure 
does not influence low-frequency transients. This criterion proved useful in establishing 
limits on 0~. 

Using the L - W scheme the pipe was divided into 120 divisions (N = 120) and At was 
evaluated at each time step in order to satisfy the CFL condition. For values of the mesh 
ratio p ranging from 0.0027 to 0.0045 the computations were carried out for 1.0 sec. The 
computed values at every second step (second-order accuracy) were used to obtain the 
pressure traces shown in Figure 7. 

5. Explicit-Implicit method [1] 

The Explicit-Implicit scheme formulated by McGuire and Morris 1-1] is a combination of 
the explicit scheme [9] and the implicit scheme [10, 12] they proposed earlier. We consider 
the system of equations represented by equation (4.1) and denote by (jAx, mat) the nodal 
points of the mesh, where j ranges over the integers 0, 1, 2 , . . . ,  N and m assumes integer 
values 1, 2, . . .  etc. N is the total number of divisions given by L/Ax. The approximations to 
Qix[jAx, (m + 1)At], based on the class of explicit schemes introduced by McGuire and 
Morris [9], are obtained from the following set of finite-difference equations: 

- 2{Q,1E(J + + Qa1-(J - Q*~[(jAx, (m + a)At)] - 1 " ½)Ax, mat] ½)Ax, mat]} 

- ap{Qi2[( j + ½)Ax, mat] - Qi2[(J - ½)Ax, ,nAt]} 

azlt Q [ .  
+ T ,3 (J + ½)Ax, mat]  + Qia[(J -- ½)Ax, mat] (5.1) 
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Qil[jAx, (m + 1)At] = Qi,[_jAx, mat] 

p(1 1) 2 2aa {Qiz[(J + 1)Ax, mat] - Q~2[(J - 1)Ax, mat]} 

P * [  " ½ ) ~ x , ( m  a)~t-1 * • a ) a t ] }  "~ ~ - a  {~i2 (J -Jr- -}- - Qi2E(J - ½)Ax, (m + 

At 
+ ~ {Qi3[(J + 1)Ax, mAt] + Qi3E(J - 1)Ax, mat]}. (5.2) 

In equations (5.1) and (5.2) Q* represents a first-order approximation to Q. The explicit 
scheme given by these equations is second-order accurate and stable if the CFL condition is 
satisfied. 

The class of implicit methods given by McGuire and Morris consists of equations (5.1) 
and an equation for Q i l [ J A x ,  (m + 1)At], as follows: 

Qia[jAx, (m + 1)At] = Qil[.jAx, mat] 

P [½ + d(a - 1)]{Qi/[(j + 1)Ax, mAt] - Qi2[(J - -  1)Ax, mat]} 
2 

P 
+ 5 (  ½ - ad){Q,2[( j + 1)Ax, (m + 1)At] - Q,2[(/" - 1)Ax, (m + 1)At]} 

+ pd{Q.*,2[(j + ½)Ax, (m + a)At] - Q*[(j - ½)Ax, (m + a)At]} 

At 
+ ~ -  {O,3E(J + 1)Ax, mat] + Q,3E(J - 1)Ax, mat]}. (5.3) 

This scheme is shown to be second-order accurate and stable if ad > 0 and p 121 < 1/2w/2ad, 
where 121 is the maximum modulus eigenvalue of the coefficient matrix of the linearized 
version of the system (4.1). 

The Explicit-Implicit scheme of McGuire and Morris [1] is a combination of equations 
(5.1) and (5.2) at grid points with (m + i) odd, and equations (5.1) and (5.3) at other grid 
points as shown in Figure 4. The scheme is of second-order accuracy and has been shown to 
be stable if and only if p[2[ < 1 a n d - ½  _< ad < ½. 

O EXPLmlr 

O IMPtmlr 

m + l  

~ h ~  

i * ~  i + 2  1 ~ 3  ~+4  

Figure 4. Definition sketch for Explicit-Implicit computational schemes. 
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For the computations of the boundary-value problem, discussed earlier, the pipe length 
was divided into 60 divisions. This means that the time interval At at which second-order 
accuracy was obtained is comparable with that for the Lax-Wendroff scheme. This is, of 
course, necessary for a comparison of results. It should be noted that the CFL condition is to 
be satisfied for both Lax-Wendroff and Explicit-Implicit schemes and hence the selection of 
A t is done the same way. 

In the Explicit-Implicit scheme the overshooting and the oscillations associated with the 
computed shock profile can be minimized, if not eliminated completely, by a proper 
selection of a and d. Stability requirements suggest ad < ½. Various positive values of a and d 
have been tried to ascertain a most suitable combination of a and d, as illustrated in Figures 
5 and 6. It was observed that when ad > ½, numerical instability did occur. McGuire and 
Morris I-1] have shown that, for values of a and d which are fairly large and of about the 
same magnitude, reasonable profiles could be obtained. But the values of the mesh size, p 
used in their examples are much larger than those encountered in the present problem. The 
value of p for the present study ranges from 0.0057 to 0.0090. As a = 2 and d = ¼ appear to 
give fairly good results (see Figure 6) they were used for all computations. The transient 
pressure computed with the Explicit-Implicit method is also presented in Figure 7 together 
with that found using the Lax-Wendroff scheme. 

6. Comparison of computed results 

The Explicit-Implicit scheme requires only about 88 percent of the computing time required 
by the Lax-Wendroff two-step scheme. Upon comparing the two pressure records of Figure 
7 it is seen that the computed transient pressures using the Explicit-Implicit Scheme agree 
well with those using the L -  W two-step scheme. The Explicit-Implicit scheme has an 
added advantage in that the numerical oscillations behind the shock waves can be reduced 
by a suitable selection of the parameters a and d. The shock front is seen to be steeper and 
better simulated (Figure 7) by the Explicit-Implicit scheme than with the L -  W scheme, 
where the use of a smoothing method has caused a higher spreading of the front. 
Furthermore, the Explicit-Implicit method incorporates the boundary conditions at each 
step for the calculations of the variables at that particular time. This is not so with the L - W 
scheme, since it is completely explicit. 

7. Conclusions 

The use of the Explicit-Implicit method [1] for solving an initial value-boundary value 
problem of transient two-phase flow for bubbly flowing mixtures in a conduit has been 
demonstrated. In the event of a discontinuity due to shock-wave formation, the direct 
numerical integration using the Explicit-Implicit method [1] is shown to be much simpler 
than the commonly used method of characteristics, which in this case involves a shock- 
fitting procedure. The l~xplicit-Implicit method [1] is simple and versatile, and because of 
the implicit set of computations is more suitable for boundary-value problems than such 
explicit methods as the Lax-Wendroff scheme. The computations along the boundary can 
be accomplished using the method of characteristics. 
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Figure 5. Influence of parameters a and d on smoothing of oscillations behind shock. 

P0 = 0.327 MPa, ~o = 0.0162, % = 1.52 m/sec, and x/L = 0.75. 

=,.= 

O 
k,.. 

..r 

# 

ILl 
rc 

2.5  

2 .0  

1.5 

1.0 

I I F I I 

! 
/ 

r I 

. . . .  a = 2, d = 0 . 1 2 5  

- - a  = 2. d = 0 . 2 5  

E X P L I C I T - I M P L I C I T  M E T H O D  

P a v =  0 . 0 0 3 3 6  

O.5 I [ J L I I L 
0 0.01 0.02 0.03 0.04 0,05 0.06 0.07 0.08 

T I M E  I N  S E C O N D S  

Figure 6. Influence of parameters a and d on smoothing of oscillations behind shock. 

Po = 0.327 MPa, % = 0.162, v 0 = 1.52 m/sec, and x/L = 0.75. 
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Figure 7. Comparison of Explicit-Implicit scheme with Lax-Wendroff method. 
P0 = 0.38 MPa, v o --- 1.5 m/sec. 

Based on the computational procedure used for the particular problem discussed here, the 
Explicit-Implicit method requires only 88~o of the computation time needed with Lax- 
Wendroff two-step scheme. Furthermore, with the Explicit-Implicit method the smoothing 
of numerical oscillations following a discontinuity can be accomplished conveniently by 
choosing proper values of the parameters a and d. 

The Explicit-Implicit method is also seen to simulate the shock front better than the Lax- 
Wendroff scheme, for which more spreading of the discontinuity is noted with the use of the 
smoothing procedure. 
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